
Component-Based System for Designing Power Supply of no Expert Knowledge Required

Heidi H. T. Yeung N. K. Poon Joe C. P. Liu
PowerELab Limited

1/F Tech. Innovation & Incubation Bldg., Hong Kong University, Pokfulam Rd., Hong Kong
Email: heidi@powerelab.com , nkpoon@eee.hku.hk , cpliu@eee.hku.hk

Abstract – This paper introduces the Component based
architecture (CBA) employed in a software to design the
switching mode power supply (SMPS). Theoretically, there is a
unique mapping between a real converter and its behavior.
Based on a known circuit topology, the proper design is
underlining in the combination of components and its physical
configuration. Neither abstract electrical model nor domain
knowledge is expected from the user. Besides, this architecture
turns optimizing the abstract parameters into component
selection.

I. INTRODUCTION
Generally, the technical works are divided into 2 types:

A) Technological Research

– Doing things wrong before becoming right
B) Product Development

– Doing things right first time and all the time

The tools for Technological Research are generic and

subtle to handle all configurations and tolerate any fault
during the experiments. The results from the tools maybe
abstract and no solution is guaranteed. For developing a
product, at least one solution is expected from the tools for a
particular specification. The solution from the tools must be
specific, focused and leaves no room for uncertainty.

Many SMPS companies resort to use Technological
Research tools for Product Development. Much expert
knowledge and effort is required on bundling up a pool of
solutions. Unfortunately, the inexperienced engineers often
fail to use the tools correctly. It leads that the varied design
quality with individual engineer’s judgment. Consequently,
the experience earned within a company is difficult to
accumulate to improve the design.

Some software is developed to standardize the design
procedures of power supply. This kind of methods is rather
expensive not only from the license fee, the working hours
engineer spent to understand the theories behind and get used
to the domain driven procedures also laid down. In short,
most conventional software cannot meet the stringent
demand.

This paper introduces a design methodology to produce
good design without expert knowledge from user. A new
concept is developed and employed in SMPS design
software.

II. CONCEPTS

A. Recursive designing procedures
Fig. 1a depicts the design procedures used by most

engineers in SMPS design. The first Specification Tier

represents the conversion of customers’ specification to
engineering design parameters. Expert knowledge is required
for choosing a circuit or known topology. The next layer is
the Calculation Tier that computes and estimates all
corresponding values to be used in the circuit at a subjective
base. For example, winding ratio, inductance etc. are
acquired from expert knowledge, rules from engineering
cookbook or working tradition.

The reasons for subjective choice in a rational circuit
design are caused by the non-homogeneous system of the
equations found in the specification. The information
provided is always insufficient to solve those equations.
Engineer needs to add subjectively more relations to ensure
number of variables in the circuit equal to the relations. This
subjective addition is called the experienced design.

In Component Tier, the most appropriate components are
chosen from those design values. It is not always possible to
find the perfect set of components matching the calculated
values. Therefore, the engineers use their expert knowledge

Specification Tier

Calculation Tier

Component Tier

Calculation Tier

Expert Knowledge

Expert Knowledge

Expert Knowledge

(a) Recursive designing procedures

Result

Specification Tier

Component Tier

Result

Component Tier

(b) Parallel designing procedure

Fig. 1: Illustration map of designing SMPS

to choose the "right" components. In some cases, the
deviation between the chosen components and the expected
values such as the leakage inductance, TR, or ESR etc are too
large. It leads to next Calculation Tier in order to provide
more hints for next Component Tier. Such iterative processes
might converge if the engineers are smart and lucky enough.
Otherwise, they may stick with these two tiers for a long time
in the diverging situation and never commit to the results.

The root cause for the second situation is the involvement
of expert knowledge from each individual in each design and
decision step. Synthetic mistake and the capability of
engineers affect the entire production of the SMPS design
directly and critically.

To prevent synthetic mistake in calculation, computer
simulator is often employed. However, it might not be quite
helpful when the engineer is not capable to give the correct
input arguments to the simulator. The possibility of having
diverging situation does not reduce much.

B. Parallel designing procedures
A better design concept [1] is introduced to a new SMPS

design tool. It serializes the design procedures from the
recursive iterations and avoids expert knowledge from user
while inputting parameters. From Fig. 1b, there is no
Calculation Tier in such software architecture and the
Component Tiers are in parallel.

Starting from Specification Tier, the first and most
important input from the user is the detail specification such
as the known circuit topology, input voltage range, expected
output voltage, output current etc. In the Component Tier, the
user has to select the modeled real components into the
circuit. The initial set of components is generated according
to the specification and some simple rules. It may not be the
best design but at least one solution is provided. The result,
likes the rating of the design, is estimated by deriving the
chosen components for a particular circuit. As all variables in
the circuit are known, the corresponding relationships can be
described by the circuit theory. No expert knowledge is
required to solve the set of relations.

The process will continue until the best result from these
parallel blocks or component combinations is found. Hence,
the convergence of design is guaranteed. The expert
knowledge is needed once only to convert the discrete
components to results while designing the software. The user
may not be an expert in the field but more knowledge from
the user helps increasing the speed and accuracy while using
this design tool.

To improve the SMPS design, we need to maximize the
efficiency. The best solution is searched from a set of parallel
blocks determined by a cost function. System optimization is
a well-known process. No matter the search method is, e.g.
Full Search or Genetic Algorithm [3], it requires no expert
knowledge from the user.

As a result, the proposed approach is suitable to be
implemented to computer software. It should provide the user
interface of selecting the circuits and their corresponding
components. An optimized result according to engineering

requirement is found out after pressing the optimizing button.

III. FROM ANALOGY TO DISCRETE
As mentioned in Section II, the proposed design employs a

parallel structure to eliminate the recursive process between
component selection and calculation. To facilitate this
structure, a new set of object functions with the component as
the input arguments is illustrated in Fig. 2a. These functions
embrace all the abstract equations under the new structure.

The conversion from the abstract continuous model to a
discrete approach is shown in Fig. 2b. The result of this
particular configuration is described by an object function
with discrete component type as the input arguments.

In fact, all components in a SMPS can be regarded as
object functions. The outermost object function is understood
as the entire power converter itself. The innermost object
function is a single electrical part in the converter. We call
this approach Component Based Architecture (CBA) [2].

Once the conversion is done, the total number of input
arguments in discrete Component Based Architecture is

smaller than that in the abstract continuous model. Thus, the
complexity of solving an optimized solution will be greatly
reduced. This approach shortens time required to find the
optimized solution and it does not cause infinite loop even
though no solution from the specification is obtained from the
abstract continuous model approach.

We have so far discussed how to select the component to
form the solution. Besides, there are another important
attributes in this CBA. It is the configuration.

In general, the physical configuration of a power converter
is known namely, 1) Circuit, 2) Component placement, 3)
PCB layout. Once these three items are defined, the
corresponding result or performance of the SMPS can be
estimated accordantly shown as Fig. 3. The best solution
must be in one of the combinations.

() ()

()
() ()

() ()

0 0

1

1 1

2

, ,

,
1,

, ,

, 1

m k j

ds j

M

r f

n f j m

f L L T O XF

f R T
O M Rg

f t t V

f V T O Do

→

→

→

 
 
 
M

(a) Turning continuous functions to discrete object functions

O1(M1)

(b) Turning continuous model to real component

Fig. 2: Transforming abstract continuous model to real discrete object

With a set of object functions and configuration
information, we can find out all the necessary information for
the combination of real component and real configuration.
No pre-determined assumption is needed.

For example, someone may assume the losses in order to
predict the junction temperature at each component. In fact,
the CBA structure eventually produces the losses and
junction temperature at the same time. All results are
generated by their own combination of component and
configuration. The result is not intended as other initial
criteria for another calculation for changing the design.

IV. REAL COMPONENT AND CONFIGURATION
In order to implement the CBA software, we have to

overcome the first barrier of defining each real component,
e.g. resistor, capacitor, MOSFET, diode, etc, into the object
function. It is not difficult for most components. The software
provides interface to input the raw data of components from
specification. All values of the equivalent model are
calculated from the raw data with corresponding object
functions. No interface for inputting these values directly is
allowed. Nonetheless, there is another challenge from the
custom-made components such as transformers.

A second barrier is the configuration issue in SMPS. After
a circuit design is chosen, only half of the job is done. For
instance, the PCB assembly affects the final performance
significantly especially the thermal performance. The
traditional recursive iteration method treats the junction
temperature of a component as an input argument. Besides
choosing a proper component from Component Tier, the
external factors like attachment of heat sink and component
placement influent the final junction temperature. It is a
paradox that we need the junction temperature to calculate
the losses, but the loss itself is greatly dependent on the
temperature. It leads deadlock dependence.

To allow the engineers making their own custom
component, e.g. transformer, and do the component

placement on the PCB, The user interface is needed.
However, most concurrent tools or user interface does not
exactly use CBA approach. For example, some engineers
spend a lot of time to construct a transformer winding method
by using some magnetic design tool. He looks for a very low
winding resistance transformer under the blueprint but too
much leakage is resulted finally or vice versa. Design and
redesign is still unavoidable.

In short, the proper user interface is a necessary condition
for CBA approach. Installing several tools into a computer
and linking them together do not mean CBA. Our belief is to
utilize the concept of CBA in developing software.

The software is built according to the CBA philosophy to
prove the approach.

V. FROM CONCEPT TO IMPLEMENTATION

A. Building standard component
The requiring data of the components are inputted through

the user interface. The characteristics are retrieved and
modeled with object functions. In general, the methods inside
the object functions can be a close form relationship, iterative
relationship or some finite element analysis result. The
non-linear behaviors of all basic components are properly
described in terms of the relationship against voltage, current,
frequency and temperature.

Fig. 4a is the non-linear characteristic of the reverse
recovery time of a rectifier. Fig. 4b illustrates the non-linear
characteristic of the channel resistance of a MOSFET against
junction temperature. Figure 4c depicts core losses of a
magnetic material against frequency. Fig. 4d shows the
resistance of a power NTC Thermistor against
root-mean-square (rms) current.

Other physical parameters such as dimensions are also
captured for thermal simulation. These properties are ready to
use in database once the user chooses particular component.

(a) trr VS di/dt of a rectifier (b) Rds VS Ti of a MOSFET

(c) Loss VS freq of a ferrite material (d) R VS I of a power NTC

Fig. 4: Implementing component and non-linear characteristic

Result

Specification Tier

Component Tier

Loss - Pd
Thermal - Tj
DVT - Vmax, Imax...
MTBF - Life, reliability

Result

Component Tier

Loss - Pd
Thermal - Tj
DVT - Vmax, Imax...
MTBF - Life, reliability

Fig. 3: Detail result of using CBA approach

B. Building custom components
Transformer is a typical custom component. It varies

widely and takes a very important role in affecting the
performance of a SMPS. Quite a lot of studies and ways have
been done to describe the behaviors of a multi-winding and
multi-layer transformer. Nevertheless, the CBA description

of a transformer is not its equivalent model but its physical
construction.

The proposed software provides a way for the user to
construct the physical structure of a transformer. Fig. 5
illustrates the graphical user interface (GUI) of building the
custom-made transformer. The user can choose the number
of turns and select the real wires from the manufacturers such
as enamel wire, triple insulated wire, or PVC wire, from the
wire database. After selecting the wire, the user can also
arrange the wire in a real magnetic core with custom PVC
tape, creepage insulator, bobbin etc.

C. Generic component selection page
The components modeled in A) are selected from the

Component Selection Page is the part in the circuit as Fig. 6
such as MOSFET. Besides, some numerical parameters, e.g.
number of turns etc, are also regarded as component. The

values are quantized to discrete component and supported by
the generic component selection page. This allows the
optimization engine searching the best solution among finite
number of component combinations with concurrent
sophisticated optimization method, e.g. GA.

The three main parts in the whole SMPS circuit are
converter, PWM controller and feedback circuits. They can
be selected as component as shown in Fig. 7.

VI. OPERATIONAL FLOWS
The most important merit of CBA is the discrete

characteristics, which allow optimization without domain
knowledge. Any generic optimization method can be adopted
according to different cost function, e.g. losses, gain margin,
material cost, etc.

Losses or Efficiency optimization can be easily done by
putting the losses calculated by the circuit simulator with
Genetic Algorithm [4] as shown at Fig. 8. With limited
resources in computation, the number of iterations or number
of called cost functions in optimization should be controlled.

Fig. 9 shows the user interface for user to set the maximum
number of iterations allowed. The more the number of
iteration, the more possible the best solution is found.

Fig. 5: Custom designed transformer GUI

Fig. 6: Generic component selection pages

Fig. 8: Optimizer using Genetic Algorithm

Fig. 7: Generic component page for selecting circuits

As mentioned in IV, the prediction of losses and junction
temperature of component are depending to each other. CBA
can easily eliminate this situation as proposed in Fig. 10. The
thermal simulator is an integrated part of the whole system to
estimate loss. We preset the junction temperature for all
components to approximate values (e.g. 60°C for resistors
and 100°C for the main transformer). Then, the losses are
estimated from the preset temperature and used in simulating
the temperature after the placement on PCB. The results are
put into the next simulation cycle.

The convergence detector determines the saturation of
temperatures as the end of simulations. The results may not
always converge since the overheat components may lead
chain effects on other components. Indeed, this also
represents the real situation that the whole SMPS is getting
burnt and following by smoke. Fig. 11 shows one of the
thermal simulation results.

VII. CONCLUSION
A CBA Component Based Architecture is proposed for

Switching Power Supply simulation software. It introduces a
new era of designing a power supply that require engineer
knowledge from close-form optimization method to
component choosing skill.

This approach is suitable for Product Development
purpose. Engineer can estimate the circuit performance,
BOM, cost, DVT, MTBF, Life and Stress in short time. The
more consistent SMPS is designed by different engineer.
Getting rid of the subjective relations avoids the possibility of
falling in design blind spot. The quality of a power supply
hence can be improved.

The future work can be possibly done on considering
different circuits as a component for the optimization
purpose.

ACKNOWLEDGEMENT
The pictures in this paper are captured from PowerESim

(http://www.poweresim.com).

REFERENCES
[1] L. Barroca, J. Hall and P. Hall, Software Architectures Advances and

Applications, Springer-Verlag London Limited, 1999.
[2] I. Crnkovic, J. A. Stafford, H. W. Schmidt and K. Wallnau,

Component-Based Software Engineering, Springer-Verlag Berlin
Heidelberg, 2004.

[3] D. E. Goldberg, Genetic Algorithms, Addison Wesley, 1988.
[4] D. Whitley, "A genetic algorithm tutorial", Statistics and Computing,

vol. 4, pp. 65-85, 1994.

Fig. 11: Thermal Analysis GUI

(a) Optimizer panel

(b) Ranked results with different efficiencies

Fig. 9: Optimizer and ranked results

Convergence detector

Simulation

Thermal Simulator

Update temperature

Circuit Simulator

M1.Tj D1.Tj XF.Tj

M1.Tj D1.Tj XF.Tj

Fig. 10: Circuit simulation procedures

